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Both symbol manipulation and numerical techniques are used to automate the cal- 
culations in a nonrelativistic ps theory in two spatial dimensions. This work applies primarily 
to the n-loop expansion. The system performed an entire 3-100~ calculation in a perturbative 
orderindependent fashion, that is, generated graphs and the corresponding algebraic 
expressions, located and manipulated divergent subgraphs, did Feynman parameterization 
and analytic integration of momentum variables, and did the modifications for the vertex 
case and the numerical integration of the Feynman parameterization integrals. Since the 
system is implemented in FORTRAN it can be used almost anywhere. It can be used to 
facilitate both research and instruction in physics. 

INTRODUCTION 

Both symbol manipulation and numerical techniques are used in this paper to 
solve problems in a nonrelativistic v3 field theory. Calculations of quantities in a field 
theory are usually done by a perturbative approach. This is because solution of the 
entire -theory is often too difficult, while the perturbative calculations are straight- 
forward. This method has been quite successful in quantum electrodynamics where the 
small coupling constant (l/137) leads to rapid convergence, and only a few terms 
need be considered. Unfortunately the number and complexity of the terms increases 
rapidly with the order of the expansion. Since the calculations are straightforward, 
they can be carried out on a computer using symbol manipulation techniques. 
Problems in quantum electrodynamics have been successfully handled by this 
approach for several years 13-9, 11, 14-16, 18, 20-22, 24-27, 291. For the reader 
who is interested in learning more about QED calculations, there are reviews 
describing the theoretical calculations and the comparison of theory with experiment 
[2, 3, 7, 12, 191. In addition to quantum electrodynamics, the case of the relativistic 
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four-dimensional $ theory has been considered by Calmet and Perrottet [4]. It might 
be noted that the symbol manipulation techniques used in these efforts need not be 
restricted to the solution of a specific problem, and several general algebraic mani- 
pulation programs have been developed. Among them, three which have been used 
for field theory calculations are ASHMEDAI, REDUCE, and SCHOONSHIP 
[17, 23,281. 

This work is concerned with the automation of calculations in a nonrelativistic 
v3 theory in two spatial dimensions. This theory has the advantage of having only 
one spinless particle. It has become of interest lately in the study of the asymptotic 
properties of diffraction scattering [I]. In particular the methods for calculating 
critical exponents used in solid state physics (e.g., the z expansion, the high temperature 
expansion, and the n-loop expansion) have been applied to Gribov’s Reggeon 
Calculus. 

This work applies primarily to the n-loop expansion. Calculations have been 
carried out to second order in the coupling squared (2-100~) [13]. The slow conver- 
gence requires the calculation of higher order terms. It is the purpose of this work to 
demonstrate how a computer may be used to perform the entire calcualtion in a 
perturbative order-independent way. This controls the problem of increasing com- 
plexity, and allows a 3-100~ calculation. Higher order calculations, at the present state 
of technology, appear to be limited by computation time. Since this work is intended 
to demonstrate how the calculation can be handled by machine, simplicity is chosen 
over efficiency. 

The elements of the solution consist of the generation of graphs, generation of the 
corresponding algebraic expression, location and handling of divergent subgraphs, 
Feynman parameterization and the analytic integration of momentum variables, 
the modifications for handling the vertex case, and the numerical integration of the 
Feynman parameterization integrals. 

THEORY 

A detailed statement of the problem follows. The free Lagrangian is defined as 

where I#I = 4(x, t) is the unrenormalized field written as a function of a two- 
dimensional space vector X, conjugate to momentum K, and time t conjugate to 
energy E. The full Lagrangian density is 

L = L, - (i/2) ro(#‘d” + ++y>. (2) 

The Green functions are 

(3) 
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and their Fourier transform is given by 

6 (c Ej a2 (2 Kj G’N*M’(E<, &) 

N 

= 
m  

d2xi dti exp(i(E& - Ki * xi)) 
i=l 

X fi d2yj dTi exp(--i(E,7i - K, * yi)) G’N*M’(~f , ti ; yj , Tj). 
j=l 

(4) 

In this work, only the 2- and 3-point unrenormalized connected proper vertex 
functions r( 1, 1) and r(l, 2) are considered. They are defined by 

N+M 

P’.“)(Ei , KJ = n (G”J’(E, , K,))-l G’N,M)(Ei , KJ (5) 
I=1 

and are the connected Green functions with the external legs amputated. The program 
will make the following calculations: 

- $ P1’(E, K)IE=+,,KL~ ; (6) 

where EN is some normalization energy. In two dimensions, elementary closed loops 
are divergent; mass counter terms are therefore required. This partial renormalization 
is given by 

P1’(E, K)~E&,,,,&, . (7) 

The calculation of G(N, M) follows from a set of Feynman rules: 

(1) draw all topologically and time order distinct graphs; 
(2) calculate the following integral for each loop: fd2K; 

(3) conserve energy and momentum at each vertex; 
(4) multiply by r,,/27r for each vertex; 
(5) multiply by the expression i/(Clines cut Ei - a’Ki2 - Mt) for each time cut; 
(6) multiply by + for each elementary closed loop. 

The program described in the next sections follows, for the most part, the same 
procedures as in a human calculation of the functions [lo]. All graphs are generated, 
an analytic expression is created from the Feynman rules, the expression is Feynman 
parameterized and evaluated. The momenta integrals are done analytically while the 
Feynman parameterization integrals are done numerically. 
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GRAPH GENERATION 

The first step is the generation of a graph. In the relativistic theories, where only 
topologically distinct graphs are considered, this is often done recursively, making all 
possible modifications of the lower order graphs and removing any redundancy 
[24,26]. However, for the nonrelativistic case the energy integration can be replaced 
if the time order of the vertices is taken into account. The algorithm given below uses 
this to calculate the graphs of a given order directly. It is not necessary to determine 
the lower order graphs and insert them into each other. Each graph is unique, so that 
it is not necessary to check for duplicates. 

Each graph represents a possible interaction sequence between identical particles. 
In the case of the propagator r(l, l), there is only one particle when the sequence 
begins and ends. Since Ql, 1) and not G(l, 1) is considered, at no other time will 
there exist only a solitary particle. The interaction allows two possible bare vertices, 
and these are used to construct the graph. The first (type 1) causes one particle to 
divide into two particles, while the second (type 2) combines two particles into a 
single particle. The propagator must be composed of equal numbers of type-l and 
type-2 vertices. For an N-loop calculation, propagator graphs are composed of 2N 

I-: 
FIG. 1. Four distinct graphs. Both topological form and the order which the vertices appear 

are important. 

5S1/25/3-7 
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vertices. Graphs are distinct if they are topologically different, or if the sequence in 
which the vertices are attached differs. One may think that each vertex, in the sequence 
composing a graph, occurs at some time with no two occurring at the same time. An 
equivalent conception is to make all possible cuts on the topologically distinct graphs 
such that each piece has one and only one vertex, and no two cuts intersect. These 
cuts divide the graph into time increments. For example, all graphs shown in Fig. 1 
are considered different. Time proceeds from the top to the bottom of the graph. 

DATA STRUCTURE 

The data structure used in generating the graphs is a one-dimensional array of 
integers. This array is partitioned into cells (Fig. 2). Each cell corresponds to the state 
of the interaction at some time between vertex events. It tells how many of each type 
of vertex remain to be used, which particle lines are present, and at which vertices 
they were created. This is done using the following representation. Each vertex is 
given a number from 1 to N, where N is the number available in a given order. Type-l 
vertices are given odd numbers, type-2 even numbers. Vertices are used in order 
within type. The first two cell elements give the negative of the next odd, and the 
next even vertices to be used. The negative numbers delimit the cell. They are followed 
by one element for each line; the element contains the number of the vertex from which 
the line originated. Since not all cells generated will correspond to a single graph, 
there is also an array of pointers which will point to those cells which compose the 
graph. The method used for generating all graphs is the following. Given a cell, 
generate all possible cells corresponding to the next time or cut (i.e., after a vertex 
has been used). Pick one of the new cells and repeat the operation. Continue until 
there are no more vertices available. For calculations of order higher than l-loop, 
the first two cells are fixed and can be provided in the initialization. The algorithm for 
generating all graphs is now presented. 

(1) Initialize by entering the first two cells. Store a pointer to the first cell for 
TIME = 1. Set TIME = 2. Consider the last cell generated. 

(2) Given a cell, store a pointer to that cell for the given TIME. Set TIME to 
TIME + 1. 

(3) Test to see if there are any type-l vertices available; if not go to 9. 
(4) Consider the first line of the cell. 
(5) Given a line, enter a new cell, with two lines from the type-l vertex replacing 

the line considered. 
(6) Consider the next line. 
(7) If it comes from the same vertex as the preceding line, go to 6. 
(8) If not out of lines, go to 5. 
(9) Test to see if there are any type-2 vertices available. If not, go to 15. 
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This cell is used 

in the representation 
of the next graph 

FIG. 2. Example of the internal representation of a graph and the data structure for graph 
generation. 

(10) Consider the first line to be line 1. Line 2 is the next line. If line 2 is the 
last line and there is more than one type-2 vertex left, go to 16. 

(11) Enter a new cell with a line from the type-2 vertex replacing line 1 and with 
line 2 deleted. 

(12) Increment line 2, if not out of lines, go to Il. 
(13) Increment line 1. If the new line 1 comes from the same vertex as the old 

line 1, go to 13. 
(14) Set line 2 to the line following line 1. If out of lines, consider the last cell 

entered and go to 2, otherwise go to 11. 
(1.5) Store a pointer to the last cell. A graph has now been generated. Its lines 
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for any TIME are given by the cell located by the pointer stored for that TIME. 
The vertex inserted between TIME = i and TIME = i + 1 can be determined by 
noting changes in the cells pointed to for those times. Further processing of the 
graph is done at this point. 

(16) Delete the last cell and decrement TIME by 1. If there are no more cells, 
stop since all graphs have been generated. 

(17) If the new last cell is pointed to for the given TIME, go to 16. Otherwise, 
consider the last cell and go to 2. 

An example of the structure for the first graph of the 2-100~ propagator is shown 
in Fig. 2. 

The program prints a picture of the graph being considered using the “I” and 
vertical bar “I”. The graph is directed from the top to the bottom of the page 

ENERGY DENOMINATORS 

Each graph has a corresponding algebraic expression which consists of a set of 
integrals over the product of denominators. The denominators are of the form 
[E + xi a’K2 + M,], where there is one denominator for each time, and Ki and Mi 
are the momenta and masses associated with each line which exists at the time. The 
expression for the entire graph is kept in the Feynman parameterized form. At this 
point, it is only necessary to represent one denominator at a time. The denominator 
can then be Feynman parameterized. The momenta of the denominators are repre- 
sented by a two-dimensional array, O(j, i), with the first index giving the line of the 
graph and a second, the momentum. The coefficients of the momenta on the line 
(- 1, 0, or 1) are stored. Their sum is not squared at this point. All lines have the same 
mass so that the coefficient of the mass term is just the total number of lines for the 
time cut. E is the external energy entering the graph and is constant, identical for all 
times. The denominator for a given time cut is constructed from the denominator for 
the preceding time cut and the cells representing the graph for the two times. A 
momentum variable must be present for each closed loop of the graph. This is easily 
done by adding a new momentum at each type-l vertex. Momentum is conserved 
at each vertex. The first two denominators, like the first two cells in the graph 
generation, may be written immediately. The first is 

1 1 0 0 ... 
0 -1 0 0 **a 

with a mass coefficient of 2. The first column represents the external momentum 
entering the graph; the second is the new momentum corresponding to the new vertex. 
The representation of each denominator is shown in Fig. 3. 

Given a denominator, the rules for representing the next denominator are as 
follows: 
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(1) Compare the cells representing the two times, line element by line element, 
until they differ. If the differing element in the later cell is even, go to 3. 

(2) A type-l vertex was inserted here, so move all following rows down 1 
(the value of D(j, i) is moved to D(j + 1, i)) to make room for the new line. Change 
the coefficient of the next momentum (K,) to be used from 0 to + 1 in the denominator 
row corresponding to the different line element. The following row represents the 
new line. Because of momentum conservation, it must have 0 for all coefficients 
except that for K, . This coefficient is - 1. Increase the mass coefficient by 1. The 
representation is finished. 

(3) A type-2 vertex was used so that the row of the denominator representation 
corresponding to this line element (row A) will be modified and some later row 
(row B) will be deleted. Continue comparing the graph cells until a second dis- 

TIME3 

TIME4 

I E+2M+a( (it+it,)2+it12) ] 

110 

o-1 0 

[ E + 3, + a( (i?+?$+i$)' + i$' + z2') ] 

111 

0 O-1 

O.-l 0 

Energy Denominator---, [ E + 2M + a( (z+2)2 + z22) ] 

1 0 1 
l+entum Array -+ 

0 o-1 

FIG. 3. Example of data structure for energy denominators. Both the external form of the 
energy denominators and the internal representation of momentum contributions are shown for 
the three time cuts of the graph. 
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crepancy is found. This corresponds to the row to be removed (row B). Add the 
coefficients of row B columnwise to row A. Move all rows following row B up one 
row (the value of O(j, i) becomes what used to be in O(j + 1, i). Decrease the mass 
coefficient by 1. The representation is finished. 

As each denominator is completed, it is printed so that the program presents the 
symbolic expression for the integrand. 

FEYNMAN PARAMETERIZATION 

Feynman parameterization is the application of 

@‘q;Ne . . . &Ni = r(Nl + N, + ’ ” + Ni) 
Wl) W2) - . . ww jol dx, jol dx, ... Jo1 dxi 

x 6 (1 - 1 Xi) x,“l-‘XP -l a.* xp-1 g(N, ‘. . NJ, (8) 

where 

g(N, . . . NJ = (xldl + x,d, + . . . + xidi)-(N’+N”+.“+N’). (9) 

This is applied to the expression derived from the graph, where the d’s are the 
denominators found for each time, i.e., d is of the form [E + xi a’Kj2 + Mi]. The 
reason for doing this is that now the K terms are found only in a sum. Since the K’s 
are integrated over all space, translation by the substitution K + K + CL blKl has 
no effect on the answer. Therefore the cross terms Ki . Kj in the expression may be 
removed by completing the square. The K integrals may now be carried out. The 
angular part just gives 25~ and the radial part is of the form 

I m &2(&(2 + B)-” = (m - 1) A-1B-n”. 
0 

(10) 

This method is particularly useful in nonintegral demension space. The {xi} integrals 
must still be done, of course, but they are scalar integrals with a finite range of 
integration. 

A three-dimensional array F is used to represent the momentum part of the 
Feynman parameterized expression. F(i, j, m) = cij, holds the coefficient of the 
cijmKi . KJ, term. Once an energy denominator has been determined, the coefficients 
of the Ki . I($ products may be calculated and entered into the matrix. A different 
third index m is given for each denominator. A one-dimensional array FM(m) holds 
the coefficients of the mass terms. An example of the F and FM arrays is given in 
Fig. 4. The algebraic expression for the Feynman parameterized form of the integrand 
is printed by the program. 

Once the contributions from all denominator terms have been added to the F 
matrix, the integration can proceed. Given values for the X variables the integrand 
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TIME1 

TIME3 

TIME4 

m-3 

1 

0 0 

10 2 

m-2 

1 

12 

112 

F(Lj,m) 

1 

12 

0 0 0 

FM = (2,392) 

FIG. 4. Example of data structure for Feynman Parameterized form. A three-dimensional array 
is used to hold the coefficients of the momentum factors for each of the contributing energy de- 
nominators. 

must be calculated. The first step is to create a two-dimensional array F' representing 
the coefficients of the K’s for the given values of the X variables, i.e., I;‘(i,j) is set to 
C,,, F(i, j, m) Xm. The next step is to complete the square for the K variable. That is P 
will be transformed so that it holds the coefficients of a new set of K variables such 
that only diagonal elements contribute. The transformation procedure which diago- 
nalizes the matrix is as follows. For each momentum m for all i, j < m, P’(i, j) is set to 
F’(i, j) - F’(m, i)* F’(m, j)/F( m, m) where m begins at the final momentum and steps 
back to the second momentum. This leaves off-diagonal elements nonzero, but they 
are simply not used. At this point the momentum integrations can be done; which 
means dividing the remaining factor by the diagonal I;’ elements (it is not divided 
by F'(1, 1) since this is the coefficient to the external momentum). The remaining 
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factor is the energy, mass, and external momentum contribution. The result is the 
integrand for the Feynman parameter integrations. For the propagator the -a/aE 
and -a/aK* derivatives are desired. However, since after having done the internal 
K integrals the expression is of the form 

(F’(2, 2) F’(3, 3) .-+)(cE + dM + F’(1, 1) K2)-j, 

the derivative can be done immediately by multiplying by a coefficient and changing 
the exponent. 

DIVERGENCES 

There is unfortunately a complication to the described procedure, which is that 
some of the graphs are divergent. Simple power counting shows that graphs diverge 
when they have elementary closed loops (i.e., low order propagators) which have no 
vertices occurring during the loop’s existence. In Fig. 5 graphs a and c diverge while b 
is Unite. In order to render these graphs finite, a subtraction of mass counter terms is 
necessary. The subtracted term may be graphically represented by replacing the loop 
with a x (Fig. 6). The energy denominator terms corresponding to the x are equal 
to those of the propagator it replaces with external momenta set to zero and the 
external energy equal to minus the mass (see Eq. (7)). However, the subtraction alone 
may still not give a well-defined expression; analytic continuation is necessary. 
This can be done on the Feynman parameter&d form by the following regular- 
ization procedure. Assume there are some denominators di , a loop term (t)N, and 
its mass counter term (c)“. Then 

(7 1 
&“i (pV - C-N) 

is to be considered. It may be written as 

t5-N~-i-1(C - t)-". 

The Feynman parameterization gives 

N-l 
r(~inf,+u+N+ 1) 

EPf ?Fo ni T(m,) F(o) T(N - ,j) r( j + I) i 
n s,I dxi Jo'+, Jo1 dy, Jo1 du 

6 (1 - c xi - y1 - y* - u) *y’yy-‘yzju’-l 

(C xid, + (Y, - u) t + (~2 + .k) 

-tC mi+otNil) 

i 
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FIG. 5. Divergent and nondivergent graphs. Graphs a and c are divergent while b is not. 

and the analytical continuation gives 

8 (1 - U - C Xi)N-l (C X,di + (y1 - 24) t + (1 - C Xi - yl)C)-(fmf+N’ . 
i i 2 

Therefore, a differentiation is necessary for each closed loop containing no external 
cuts. This is done numerically, and doubles the time necessary for the calculation. 
An additional Feynman integration variable also has been picked up. However, 
for the divergent loops the denominator at the time just before the loop is identical 

5fw5/3-S 
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a V 

FIG. 6. Graphs representing mass counter terms. These correspond to graphs a and c of Fig. 5. 

to the denominator at the time just after the loop. The denominators may be combined, 
reducing the number of integrations by one. Thus there is no net change in the 
number of integrations. There is, however, a change in the integration limits, the 
effects of which will be mentioned later. 

VERTICES 

Earlier it was stated that both 2- and 3-point functions were to be calculated. 
However, up to this point, only the propagator has been discussed. In this section the 
changes which must be made in order to handle vertices are described. The first step 
is to generate them. A set of graphs, which include all of the vertex graphs for the 



NONRELATIVISTIC q? THEORY IN. 2 DIMENSIONS 309 

n-loop order, is the set of all propagator graphs for the (n + I)-loop order, with the 
final joining vertex removed. This set also contains graphs with closed loops on the 
external legs. These graphs should not be included. They are easily distinguished. 
The program already checks for loops. If a loop occurs on the external vertex the 
graph is deleted. In generating the propagator graphs, flipping the graph about a line 
through the external legs produced an equivalent graph. To remove this symmetry 
the first two bare vertices were initially specified. However, in the vertex case, the 
flipped graphs are distinct and should be included. But since they are calculated at 
a symmetric point the flipped graphs contribute the same amount as the unflipped 
graphs. The program therefore calculates only half of the 3-point graphs. The full 
answer is just twice the number calculated. 

The next problem is that one extra momentum was described which results in the 
external legs leaving the vertex having nonzero momentum. To correct this, one of the 
momenta contributing to that in the external legs must be redefined in terms of the 
other momenta so that their sum is zero. What this means to the program is some 
shuffling of the coefficients stored in the F array. Since the expression for the energy 
denominators is printed as they are calculated, it will contain this error. The Feynman 
parameterized expression, however, will be correct. 

Finally, there is an additional time cut, which would imply another Feynman 
parameter integration. There is, however, an alternative for the case where external 
momenta are zero. For this case the square completion need not be done on the first 
internal momentum K1 , and the first time need not have a Feynman parameter 
attached. so that the form 

s 
m dk,z(E + 2M + 2&2)-i (AK12 + B)-j (16) 

0 

is obtained. This form can be integrated without combining 

B-i(E + M)/(i + j - 1) ,F,(l,j, i + j; 1 - (E + M)A/B). (17) 

It was found that for this program, evaluating the hypergeometric function was 
faster than doing an additional Feynman parameter integration. 

NUMERICAL INTEGRATION 

The numerical integration algorithm will be discussed only briefly. As has been 
indicated, the Feynman parameterization leaves integrals of the form 

[ dx, px, *.* s,l dx‘d (1 - CXi)f(Xi). 

Doing the last integral changes the limits 

s 
1--21-~~..-%4 dxN-l f(xi) 

0 

(18) 

(19) 
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N-l 

x,,,= 1 - c xi. 

1=1 

For simplicity, while allowing arbitrary N, a rectangular integration was used 
with constant step size. It may be noted that this integration scheme is neither very 
efficient nor accurate. 

Although the integral is finite, the integrand may diverge at the limits. A similar 
problem arises in QED calculation, and work has been done toward developing. 
appropriate integration schemes. One approach is an adaptive Monte Carlo routine, 
where the integration is divided into subvolumes, and the variance of the subvolume 
integral is used to guide further subdivisions [18]. A second approach is to use 
Gaussian quadratures after a mapping is performed to smooth the integrand [22]. 

If counter terms are needed, two complications arise: First, there will be a numerical 
derivative d/du which entails calculating at two values of U, integrals of the form 

dx, a-- 
s 

1-U-9-“‘-5n-a dxNel f(xi , u)a 
0 

(21) 

u may be chosen to be Ul = zero, and some other point smaller than the smallest 
X value, i.e., U2 < dX/N. The different integration limits mean that two different 
step sizes dX1 and dX2 must be maintained. The integrals are calculated simulta- 
neously to avoid the loss of significant figures. 

The second complication is that Feynman parameterization must be applied to 
each internal closed loop to form it into a single denominator term before the sub- 
traction and regularization can be carried out. Thus there may be several series of 
integrals, 

I l-u s l-ul-xl-“‘-xM-z dxM-, ,- 1-W 

dx, *.. 
0 

dx,+, . . . j- 
l-U”-Qf+1”‘-5‘+e 

dX,-, "', (22) 
0 0 0 

although the total number of integrations does not increase. The limits have changed, 
so that under the constant step size algorithm, the calculation of expression (22) 
may take appreciably longer than that of (19). 

The integration procedure increments the innermost integration parameter from 
zero to its upper limit. When the upper limit is reached, the integration parameter 
is reset to its lowest value, and the parameter for the next integral is incremented. 
The incrementing continues in this manner until the outermost integral is stepped 
past its upper limit at which point the integration is completed. This procedure 
applies even when there are groups of integrals (due to counter terms) as in expression 
(22). The program does need to know the value of the upper limit, but this is just a 
subtraction of variables in the integral group. The only new information which must 
be supplied when handling groups is with which variables the group begins and ends. 
This is supplied by means of a list of those variables which begin integration groups. 
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COMPUTATION TIME AND MEMORY 

For the purpose of discussing the time and memory requirements for this program, 
the processing will be divided into two areas: First, the graph generation, and second, 
the graph processing. The requirements for graph generation were determined empir- 
ically from generation of the l-loop to 5-100~ propagator. It was found that the space 
required to generate the graphs approximately doubled with each order. Processing 
of the graphs requires several arrays, the largest of which was three dimensional 
and grew as the order cubed. Therefore, this N-loop expansion method requires 
approximately 2N + N3 memory. It should be noted that it is not necessary to save 
representations of all possible configurations for the next time cut, as was done by 
the program. By saving only the type of vertex and the line to which it was attached, 
the representation of the graph cell need not be generated until it is actually used. 
Therefore the space requirements for graph generation could be reduced to order 
N log(N). 

10000 

0 z-point 

+ 3-pointz 

0 1 2 3 4 5 

LOOP ORDER 

FIG. 7. The number of graphs vs loop order. 



312 HARRIKGTON AND HOLDEN 

Although the space requirement grows exponentially, it is the time requirement 
which limits the expansion. The number of graphs grows approximately as (2N - 2)! 
for the propagator, and as is proportional to (2N)! for the vertex (Fig. 7). Processing 
each graph requires (2N - 2) nested integrations. The time necessary for the 3-point 
functions grows as (2N)! b2”. In the light of this it would seem that an extraordinary 
effort would be necessary to proceed beyond the 3-100~ calculation. 

CONCLUSIONS 

The procedure which has been described is capable of generating all graphs of any 
given order, and of parameterizing and evaluating any graph in the theory. The 
two phases of processing are independent and could be separated so that, for example, 
individual graphs of any order could be calculated. The scheme is sufficiently powerful 
to extend the evaluation of the 2- and 3-point function from second order to third 
order, but further extension of order appears unlikely because of the inordinate 
computation time required. The greatest need for increased efficiency lies in the 
numerical integration. This may be facilitated by considering, for example, a specific 
perturbative order, rather than arbitrary order. 

The program could be generalized to evaluate the 2- and 3-point functions at 
arbitrary values of external energy and momentum. The program described here 
allows only variations in the energy (Eq. (6)). A less straightforward improvement 
would be to take full advantage of the symmetries occurring when the external 
energy is zero. 

Another possible extension of the program would be a generalization from two 
to D spatial dimensions. The subtraction of counterterms inside the integral allows 
just such a generalization. With D 7 4, the vertex subgraphs become divergent 
and further subtractions are necessary. But for D < 4 the expressions are finite, 
although converging less rapidly for increasing D. On the other hand, if all calcu- 
lations are to be done in two spatial dimensions, the nondivergent counter terms 
could be handled more efficiently. This suggests using extrapolation techniques to 
calculate a third order E expansion. Finally, functions other than the 2- and 3-point 
functions could be calculated by beginning with a representation for the correct 
number of incoming particles, ending with the correct number, and then removing 
any graphs with external propagators. This is just what was done to generate the 
3-point function. The calculation of the 3-point function could be improved by 
calculating the type-2 rather than the type-l vertex; that is, having two external legs 
enter the vertex and one leg leave. This would ensure that all external momenta would 
be zero, and thus remove the need for renaming the momenta as is done by this 
program. 
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